-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
1584 lines (1056 loc) · 41.8 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Copyright (c) 2015 - 2021, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "nordic_common.h"
#include "nrf.h"
#include "app_error.h"
#include "ble.h"
#include "ble_err.h"
#include "ble_hci.h"
#include "ble_srv_common.h"
#include "ble_advdata.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_ble.h"
#include "boards.h"
#include "app_timer.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "ble_service.h"
#include "board_define.h"
#include "protocol.h"
#include "nrf_drv_twi.h"
#include "nrf_drv_saadc.h"
#define DEVICE_NAME "MotionTracker" /**< Name of device. Will be included in the advertising data. */
#define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */
#define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */
#define APP_DATA_READY_ADV_INTERVAL 240 /**< The advertising interval (in units of 0.625 ms; this value corresponds to 40 ms). */
#define APP_IDLE_ADV_INTERVAL 1280 /**< The advertising interval (in units of 0.625 ms; this value corresponds to 40 ms). */
#define APP_ADV_DURATION BLE_GAP_ADV_TIMEOUT_GENERAL_UNLIMITED /**< The advertising time-out (in units of seconds). When set to 0, we will never time out. */
#define MIN_CONN_INTERVAL MSEC_TO_UNITS(100, UNIT_1_25_MS) /**< Minimum acceptable connection interval (0.5 seconds). */
#define MAX_CONN_INTERVAL MSEC_TO_UNITS(200, UNIT_1_25_MS) /**< Maximum acceptable connection interval (1 second). */
#define SLAVE_LATENCY 0 /**< Slave latency. */
#define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory time-out (4 seconds). */
#define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(20000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (15 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (5 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */
#define APP_TIMER_DELAY APP_TIMER_TICKS(100)
#define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
#define DISCONNECT_TIMEOUT 30
#define SAADC_SAMPLES_IN_BUFFER 2
#define TWI_TIMEOUT_COUNT 10
#define PAYLOAD_BUFFER_SIZE 3
#define KXTJ3_ADDRESS 0x0E
#define SCALE_VALUE 15.987f
#define NTC_VCC_VALUE 3.3f
BLE_SERVICE_DEF(m_service);
NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/
APP_TIMER_DEF(m_app_timer_id);
static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */
static uint8_t m_adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET; /**< Advertising handle used to identify an advertising set. */
static uint8_t m_enc_advdata[BLE_GAP_ADV_SET_DATA_SIZE_MAX]; /**< Buffer for storing an encoded advertising set. */
static uint8_t m_enc_scan_response_data[BLE_GAP_ADV_SET_DATA_SIZE_MAX]; /**< Buffer for storing an encoded scan data. */
volatile uint8_t twi_read_done = 0x00;
volatile uint8_t twi_write_done = 0x00;
volatile uint8_t twi_address_nack = 0x00;
const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(0);
static nrf_saadc_value_t m_buffer_pool_low_power[2][SAADC_SAMPLES_IN_BUFFER];
static volatile uint8_t m_saadc_initialized = 0x00;
static volatile uint8_t one_sec_timer_update = 0x00;
static volatile uint8_t app_timer_update = 0x00;
static int8_t temperature = 0;
static uint8_t battery_value = 0x00;
static packet_header_0_t packet_header_0;
static packet_header_1_t packet_header_1;
static packet_event_0_t packet_event_0;
static packet_event_1_t packet_event_1;
static product_id_t product_id;
static volatile uint8_t packet_id = 0;
static volatile uint8_t command_id = 0;
static volatile uint8_t node_packet_data_size;
static node_packet_data_t node_packet_data;
static uint8_t vector_data_index = 0;
static uint8_t vector_data[200] = { 0x00 };
static uint8_t payload_buffer_index = 0;
static payload_t payload_buffer[PAYLOAD_BUFFER_SIZE];
static volatile uint8_t on_off_state = 0x01;
static volatile uint8_t tx_complete_state = 0x01;
static volatile uint8_t aggregator_notify_enable_state = 0x00;
static volatile uint8_t stream_notify_enable_state = 0x00;
static volatile uint16_t disconnect_timeout_count = 0;
static volatile uint8_t request_disconnect = 0x00;
static volatile uint8_t data_update_state = 0x00;
static uint8_t mac_address[8] = { 0x00 };
/**@brief Struct that contains pointers to the encoded advertising data. */
static ble_gap_adv_data_t m_adv_data = { .adv_data = { .p_data = m_enc_advdata,
.len = BLE_GAP_ADV_SET_DATA_SIZE_MAX }, .scan_rsp_data = { .p_data =
m_enc_scan_response_data, .len = BLE_GAP_ADV_SET_DATA_SIZE_MAX
} };
/**@brief Function for assert macro callback.
*
* @details This function will be called in case of an assert in the SoftDevice.
*
* @warning This handler is an example only and does not fit a final product. You need to analyze
* how your product is supposed to react in case of Assert.
* @warning On assert from the SoftDevice, the system can only recover on reset.
*
* @param[in] line_num Line number of the failing ASSERT call.
* @param[in] p_file_name File name of the failing ASSERT call.
*/
void assert_nrf_callback(uint16_t line_num, const uint8_t *p_file_name) {
app_error_handler(DEAD_BEEF, line_num, p_file_name);
}
/**@brief Function for the Timer initialization.
*
* @details Initializes the timer module.
*/
static void app_time_timeout_handler(void *p_context) {
static uint8_t one_sec_timer_count = 0;
UNUSED_PARAMETER(p_context);
one_sec_timer_count += 1;
if (one_sec_timer_count > 10) {
one_sec_timer_update = 0x01;
one_sec_timer_count = 0;
}
app_timer_update = 0x01;
}
static void timers_init(void) {
// Initialize timer module, making it use the scheduler
ret_code_t err_code = app_timer_init();
APP_ERROR_CHECK(err_code);
err_code = app_timer_create(&m_app_timer_id, APP_TIMER_MODE_REPEATED,
app_time_timeout_handler);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for the GAP initialization.
*
* @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the
* device including the device name, appearance, and the preferred connection parameters.
*/
static void gap_params_init(void) {
ret_code_t err_code;
ble_gap_conn_params_t gap_conn_params;
ble_gap_conn_sec_mode_t sec_mode;
BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
err_code = sd_ble_gap_device_name_set(&sec_mode,
(const uint8_t*) DEVICE_NAME, strlen(DEVICE_NAME));
APP_ERROR_CHECK(err_code);
memset(&gap_conn_params, 0, sizeof(gap_conn_params));
gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
gap_conn_params.slave_latency = SLAVE_LATENCY;
gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;
err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for initializing the GATT module.
*/
static void gatt_init(void) {
ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for initializing the Advertising functionality.
*
* @details Encodes the required advertising data and passes it to the stack.
* Also builds a structure to be passed to the stack when starting advertising.
*/
static void advertising_init(uint8_t data_update_state) {
ret_code_t err_code;
ble_advdata_t advdata;
ble_advdata_t srdata;
uint32_t interval = APP_IDLE_ADV_INTERVAL;
// Build and set advertising data.
memset(&advdata, 0, sizeof(advdata));
advdata.name_type = BLE_ADVDATA_FULL_NAME;
advdata.include_appearance = true;
advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
if (data_update_state) {
ble_uuid_t adv_uuids[] = { { BLE_DATA_READY_UUID_SCAN_SERVICE,
m_service.uuid_type } };
memset(&srdata, 0, sizeof(srdata));
srdata.uuids_complete.uuid_cnt = sizeof(adv_uuids)
/ sizeof(adv_uuids[0]);
srdata.uuids_complete.p_uuids = adv_uuids;
interval = APP_DATA_READY_ADV_INTERVAL;
} else {
ble_uuid_t adv_uuids[] = { { BLE_IDLE_UUID_SCAN_SERVICE,
m_service.uuid_type } };
memset(&srdata, 0, sizeof(srdata));
srdata.uuids_complete.uuid_cnt = sizeof(adv_uuids)
/ sizeof(adv_uuids[0]);
srdata.uuids_complete.p_uuids = adv_uuids;
interval = APP_IDLE_ADV_INTERVAL;
}
err_code = ble_advdata_encode(&advdata, m_adv_data.adv_data.p_data,
&m_adv_data.adv_data.len);
APP_ERROR_CHECK(err_code);
err_code = ble_advdata_encode(&srdata, m_adv_data.scan_rsp_data.p_data,
&m_adv_data.scan_rsp_data.len);
APP_ERROR_CHECK(err_code);
ble_gap_adv_params_t adv_params;
// Set advertising parameters.
memset(&adv_params, 0, sizeof(adv_params));
adv_params.primary_phy = BLE_GAP_PHY_1MBPS;
adv_params.duration = APP_ADV_DURATION;
adv_params.properties.type =
BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED;
adv_params.p_peer_addr = NULL;
adv_params.filter_policy = BLE_GAP_ADV_FP_ANY;
adv_params.interval = interval;
err_code = sd_ble_gap_adv_set_configure(&m_adv_handle, &m_adv_data,
&adv_params);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for handling Queued Write Module errors.
*
* @details A pointer to this function will be passed to each service which may need to inform the
* application about an error.
*
* @param[in] nrf_error Error code containing information about what went wrong.
*/
static void nrf_qwr_error_handler(uint32_t nrf_error) {
APP_ERROR_HANDLER(nrf_error);
}
static void ble_service_tx_complete_handler(uint16_t conn_handle,
ble_service_t *p_service) {
tx_complete_state = 0x02;
NRF_LOG_INFO("TX complete %d", tx_complete_state);
}
static void ble_service_notify_state_event_handler(uint16_t conn_handle,
ble_service_t *p_service, uint8_t p_event_notify_char, uint8_t p_event) {
if (p_event_notify_char == BLE_AGGREGATOR_CHAR) {
aggregator_notify_enable_state = p_event;
stream_notify_enable_state = 0x00;
NRF_LOG_INFO("Notify aggregator enable %d",
aggregator_notify_enable_state);
} else if (p_event_notify_char == BLE_STREAM_CHAR) {
aggregator_notify_enable_state = 0x00;
stream_notify_enable_state = p_event;
NRF_LOG_INFO("Notify stream enable %d", stream_notify_enable_state);
}
}
static void ble_service_write_handler(uint16_t conn_handle,
ble_service_t *p_service, uint8_t event_type, uint8_t const *buffer,
uint8_t buffer_size) {
}
/**@brief Function for initializing services that will be used by the application.
*/
static void services_init(void) {
ret_code_t err_code;
ble_service_init_t init = { 0 };
nrf_ble_qwr_init_t qwr_init = { 0 };
// Initialize Queued Write Module.
qwr_init.error_handler = nrf_qwr_error_handler;
err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
APP_ERROR_CHECK(err_code);
init.ble_service_tx_complete_handler = ble_service_tx_complete_handler;
init.ble_service_notify_state_event_handler =
ble_service_notify_state_event_handler;
init.ble_write_handler = ble_service_write_handler;
err_code = ble_service_init(&m_service, &init);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for handling the Connection Parameters Module.
*
* @details This function will be called for all events in the Connection Parameters Module that
* are passed to the application.
*
* @note All this function does is to disconnect. This could have been done by simply
* setting the disconnect_on_fail config parameter, but instead we use the event
* handler mechanism to demonstrate its use.
*
* @param[in] p_evt Event received from the Connection Parameters Module.
*/
static void on_conn_params_evt(ble_conn_params_evt_t *p_evt) {
ret_code_t err_code;
if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) {
err_code = sd_ble_gap_disconnect(m_conn_handle,
BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
APP_ERROR_CHECK(err_code);
}
}
/**@brief Function for handling a Connection Parameters error.
*
* @param[in] nrf_error Error code containing information about what went wrong.
*/
static void conn_params_error_handler(uint32_t nrf_error) {
APP_ERROR_HANDLER(nrf_error);
}
/**@brief Function for initializing the Connection Parameters module.
*/
static void conn_params_init(void) {
ret_code_t err_code;
ble_conn_params_init_t cp_init;
memset(&cp_init, 0, sizeof(cp_init));
cp_init.p_conn_params = NULL;
cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
cp_init.disconnect_on_fail = false;
cp_init.evt_handler = on_conn_params_evt;
cp_init.error_handler = conn_params_error_handler;
err_code = ble_conn_params_init(&cp_init);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for starting advertising.
*/
static void advertising_start(void) {
ret_code_t err_code;
err_code = sd_ble_gap_adv_start(m_adv_handle, APP_BLE_CONN_CFG_TAG);
APP_ERROR_CHECK(err_code);
}
static void adversting_stop(void) {
sd_ble_gap_adv_stop(m_adv_handle);
}
/**@brief Function for handling BLE events.
*
* @param[in] p_ble_evt Bluetooth stack event.
* @param[in] p_context Unused.
*/
static void ble_evt_handler(ble_evt_t const *p_ble_evt, void *p_context) {
ret_code_t err_code;
switch (p_ble_evt->header.evt_id) {
case BLE_GAP_EVT_CONNECTED:
NRF_LOG_INFO("Connected")
;
tx_complete_state = 0x01;
aggregator_notify_enable_state = 0x00;
stream_notify_enable_state = 0x00;
disconnect_timeout_count = 0;
request_disconnect = 0x00;
m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
APP_ERROR_CHECK(err_code);
break;
case BLE_GAP_EVT_DISCONNECTED:
NRF_LOG_INFO("Disconnected")
;
tx_complete_state = 0x01;
aggregator_notify_enable_state = 0x00;
stream_notify_enable_state = 0x00;
disconnect_timeout_count = 0;
request_disconnect = 0x00;
m_conn_handle = BLE_CONN_HANDLE_INVALID;
gap_params_init();
advertising_init(data_update_state);
advertising_start();
break;
case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
// Pairing not supported
err_code = sd_ble_gap_sec_params_reply(m_conn_handle,
BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
APP_ERROR_CHECK(err_code);
break;
case BLE_GAP_EVT_PHY_UPDATE_REQUEST: {
NRF_LOG_DEBUG("PHY update request.");
ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys =
BLE_GAP_PHY_AUTO, };
err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle,
&phys);
APP_ERROR_CHECK(err_code);
}
break;
case BLE_GATTS_EVT_SYS_ATTR_MISSING:
// No system attributes have been stored.
err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
APP_ERROR_CHECK(err_code);
break;
case BLE_GATTC_EVT_TIMEOUT:
// Disconnect on GATT Client timeout event.
NRF_LOG_DEBUG("GATT Client Timeout.")
;
err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break;
case BLE_GATTS_EVT_TIMEOUT:
// Disconnect on GATT Server timeout event.
NRF_LOG_DEBUG("GATT Server Timeout.")
;
err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break;
default:
// No implementation needed.
break;
}
}
/**@brief Function for initializing the BLE stack.
*
* @details Initializes the SoftDevice and the BLE event interrupt.
*/
static void ble_stack_init(void) {
ret_code_t err_code;
err_code = nrf_sdh_enable_request();
APP_ERROR_CHECK(err_code);
// Configure the BLE stack using the default settings.
// Fetch the start address of the application RAM.
uint32_t ram_start = 0;
err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
APP_ERROR_CHECK(err_code);
// Enable BLE stack.
err_code = nrf_sdh_ble_enable(&ram_start);
APP_ERROR_CHECK(err_code);
// Register a handler for BLE events.
NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler,
NULL);
sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);
}
static void log_init(void) {
ret_code_t err_code = NRF_LOG_INIT(NULL);
APP_ERROR_CHECK(err_code);
NRF_LOG_DEFAULT_BACKENDS_INIT();
}
/**@brief Function for initializing power management.
*/
static void power_management_init(void) {
ret_code_t err_code;
err_code = nrf_pwr_mgmt_init();
APP_ERROR_CHECK(err_code);
}
/**@brief Function for handling the idle state (main loop).
*
* @details If there is no pending log operation, then sleep until next the next event occurs.
*/
static void idle_state_handle(void) {
if (NRF_LOG_PROCESS() == false) {
nrf_pwr_mgmt_run();
}
}
static void wait_200ms() {
for (uint8_t i = 0; i < 2; i++) {
while (!app_timer_update) {
idle_state_handle();
}
app_timer_update = 0x00;
}
}
static void saadc_callback(nrf_drv_saadc_evt_t const *p_event) {
if (p_event->type == NRF_DRV_SAADC_EVT_DONE) {
ret_code_t err_code;
err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer,
SAADC_SAMPLES_IN_BUFFER); //Set buffer so the SAADC can write to it again. This is either "buffer 1" or "buffer 2"
APP_ERROR_CHECK(err_code);
int32_t adc_0_value = p_event->data.done.p_buffer[0];
float battery = (float) adc_0_value / 4095.0f;
battery = battery * 3.6f;
battery_value = (uint8_t) (battery * 10);
NRF_LOG_INFO("BAT %d", battery_value);
int32_t adc_1_value = p_event->data.done.p_buffer[1];
float ntc_voltage = (float) adc_1_value / 4095.0f;
ntc_voltage = ntc_voltage * 3.6f;
NRF_LOG_INFO("NTC Voltage %d", ntc_voltage * 10);
ntc_voltage = 10000.0f / ((NTC_VCC_VALUE / ntc_voltage) - 1.0f);
NRF_LOG_INFO("NTC RES %d", ntc_voltage);
float steinhart;
float log_r = log(ntc_voltage);
float log_r3 = log_r * log_r * log_r;
//5 25 45
steinhart = 1.0f
/ (0.8941477617e-3f + 2.504929761e-4f * log_r
+ 1.954945108e-7f * log_r3);
steinhart -= 273.15f;
temperature = roundf(steinhart);
NRF_LOG_INFO("TEMP %d", temperature);
nrf_drv_saadc_uninit();
NRF_SAADC->INTENCLR = (SAADC_INTENCLR_END_Clear
<< SAADC_INTENCLR_END_Pos);
NVIC_ClearPendingIRQ(SAADC_IRQn);
m_saadc_initialized = 0x00;
}
}
static void saadc_init(void) {
ret_code_t err_code;
nrf_drv_saadc_config_t saadc_config;
nrf_saadc_channel_config_t channel_config0;
nrf_saadc_channel_config_t channel_config1;
//Configure SAADC
saadc_config.resolution = NRF_SAADC_RESOLUTION_12BIT; //Set SAADC resolution to 12-bit. This will make the SAADC output values from 0 (when input voltage is 0V) to 2^12=2048 (when input voltage is 3.6V for channel gain setting of 1/6).
saadc_config.oversample = NRF_SAADC_OVERSAMPLE_DISABLED; //Set oversample to 4x. This will make the SAADC output a single averaged value when the SAMPLE task is triggered 4 times.
saadc_config.interrupt_priority = APP_IRQ_PRIORITY_LOW; //Set SAADC interrupt to low priority.
//Initialize SAADC
err_code = nrf_drv_saadc_init(&saadc_config, saadc_callback); //Initialize the SAADC with configuration and callback function. The application must then implement the saadc_callback function, which will be called when SAADC interrupt is triggered
APP_ERROR_CHECK(err_code);
channel_config0.reference = NRF_SAADC_REFERENCE_INTERNAL; //Set internal reference of fixed 0.6 volts
channel_config0.gain = NRF_SAADC_GAIN1_6; //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
channel_config0.acq_time = NRF_SAADC_ACQTIME_10US; //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS.
channel_config0.mode = NRF_SAADC_MODE_SINGLE_ENDED; //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
channel_config0.pin_p = NRF_SAADC_INPUT_AIN2; //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
channel_config0.pin_n = NRF_SAADC_INPUT_DISABLED; //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
channel_config0.resistor_p = NRF_SAADC_RESISTOR_DISABLED; //Disable pullup resistor on the input pin
channel_config0.resistor_n = NRF_SAADC_RESISTOR_DISABLED; //Disable pulldown resistor on the input pin
//Initialize SAADC channel
err_code = nrf_drv_saadc_channel_init(0, &channel_config0); //Initialize SAADC channel 0 with the channel configuration
APP_ERROR_CHECK(err_code);
channel_config1.reference = NRF_SAADC_REFERENCE_INTERNAL; //Set internal reference of fixed 0.6 volts
channel_config1.gain = NRF_SAADC_GAIN1_6; //Set input gain to 1/6. The maximum SAADC input voltage is then 0.6V/(1/6)=3.6V. The single ended input range is then 0V-3.6V
channel_config1.acq_time = NRF_SAADC_ACQTIME_10US; //Set acquisition time. Set low acquisition time to enable maximum sampling frequency of 200kHz. Set high acquisition time to allow maximum source resistance up to 800 kohm, see the SAADC electrical specification in the PS.
channel_config1.mode = NRF_SAADC_MODE_SINGLE_ENDED; //Set SAADC as single ended. This means it will only have the positive pin as input, and the negative pin is shorted to ground (0V) internally.
channel_config1.pin_p = NRF_SAADC_INPUT_AIN3; //Select the input pin for the channel. AIN0 pin maps to physical pin P0.02.
channel_config1.pin_n = NRF_SAADC_INPUT_DISABLED; //Since the SAADC is single ended, the negative pin is disabled. The negative pin is shorted to ground internally.
channel_config1.resistor_p = NRF_SAADC_RESISTOR_DISABLED; //Disable pullup resistor on the input pin
channel_config1.resistor_n = NRF_SAADC_RESISTOR_DISABLED; //Disable pulldown resistor on the input pin
//Initialize SAADC channel
err_code = nrf_drv_saadc_channel_init(1, &channel_config1); //Initialize SAADC channel 1 with the channel configuration
APP_ERROR_CHECK(err_code);
err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool_low_power[0],
SAADC_SAMPLES_IN_BUFFER); //Set SAADC buffer 1. The SAADC will start to write to this buffer
APP_ERROR_CHECK(err_code);
err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool_low_power[1],
SAADC_SAMPLES_IN_BUFFER); //Set SAADC buffer 2. The SAADC will write to this buffer when buffer 1 is full. This will give the applicaiton time to process data in buffer 1.
APP_ERROR_CHECK(err_code);
}
void read_battery_level_temperature(void) {
if (m_saadc_initialized == 0x00) {
saadc_init();
}
m_saadc_initialized = 0x01;
nrf_drv_saadc_sample();
}
//static void twi_scan(void) {
//
// NRF_LOG_INFO("I2C Scan started.");
// NRF_LOG_FLUSH();
//
// for (uint16_t i = 0; i < 127; i++) {
//
// uint8_t reg = 0x01;
// uint8_t twi_timeout = 5;
//
// twi_write_done = 0x00;
// twi_read_done = 0x00;
// twi_address_nack = 0x00;
//
// nrf_drv_twi_tx(&m_twi, i, ®, 1, false);
//
// while (!twi_write_done && --twi_timeout) {
//
// idle_state_handle();
//
// }
//
// if (!twi_address_nack) {
//
// NRF_LOG_INFO("FIND %02X", i);
//
// }
//
// NRF_LOG_FLUSH();
//
// }
//
//}
static void twi_handler(nrf_drv_twi_evt_t const *p_event, void *p_context) {
switch (p_event->type) {
case NRF_DRV_TWI_EVT_DONE:
twi_write_done = 0x01;
twi_read_done = 0x01;
break;
default:
// NRF_DRV_TWI_EVT_ADDRESS_NACK,
// NRF_DRV_TWI_EVT_DATA_NACK
twi_write_done = 0x01;
twi_read_done = 0x01;
twi_address_nack = 0x01;
break;
}
}
static void twi_init(void) {
ret_code_t err_code;
const nrf_drv_twi_config_t twi_config =
{ .scl = I2C_SCL_GPIO, .sda = I2C_SDA_GPIO, .frequency =
NRF_DRV_TWI_FREQ_400K, .interrupt_priority =
APP_IRQ_PRIORITY_HIGH, .clear_bus_init = false };
err_code = nrf_drv_twi_init(&m_twi, &twi_config, twi_handler, NULL);
APP_ERROR_CHECK(err_code);
nrf_drv_twi_enable(&m_twi);
}
static uint8_t kxtj3_init() {
uint8_t i2c_state = 0x01;
uint8_t twi_timeout = 0;
uint8_t reg[2];
//software reset
reg[0] = 0x1D;
reg[1] = (1 << 7);
twi_timeout = TWI_TIMEOUT_COUNT;
twi_write_done = 0x00;
twi_address_nack = 0x00;
nrf_drv_twi_tx(&m_twi, KXTJ3_ADDRESS, reg, 2, false);
while (!twi_write_done && --twi_timeout) {
idle_state_handle();
}
if (!twi_timeout || twi_address_nack) {
i2c_state = i2c_state & 0x00;
} else {
i2c_state = i2c_state & 0x01;
}
//Wait 300ms
for (uint8_t i = 0; i < 3; i++) {
idle_state_handle();
}
reg[0] = 0x1B;
reg[1] = 0b00000000;
twi_timeout = TWI_TIMEOUT_COUNT;
twi_write_done = 0x00;
twi_address_nack = 0x00;
nrf_drv_twi_tx(&m_twi, KXTJ3_ADDRESS, reg, 2, false);
while (!twi_write_done && --twi_timeout) {
idle_state_handle();
}
if (!twi_timeout || twi_address_nack) {
i2c_state = i2c_state & 0x00;
} else {
i2c_state = i2c_state & 0x01;
}
//Wait 300ms
for (uint8_t i = 0; i < 3; i++) {
idle_state_handle();
}
reg[0] = 0x21;
reg[1] = 0x00;
twi_timeout = TWI_TIMEOUT_COUNT;
twi_write_done = 0x00;
twi_address_nack = 0x00;
nrf_drv_twi_tx(&m_twi, KXTJ3_ADDRESS, reg, 2, false);
while (!twi_write_done && --twi_timeout) {
idle_state_handle();
}
if (!twi_timeout || twi_address_nack) {
i2c_state = i2c_state & 0x00;
} else {
i2c_state = i2c_state & 0x01;
}
reg[0] = 0x1F;
reg[1] = 0x00;
twi_timeout = TWI_TIMEOUT_COUNT;
twi_write_done = 0x00;
twi_address_nack = 0x00;
nrf_drv_twi_tx(&m_twi, KXTJ3_ADDRESS, reg, 2, false);
while (!twi_write_done && --twi_timeout) {
idle_state_handle();
}
if (!twi_timeout || twi_address_nack) {
i2c_state = i2c_state & 0x00;
} else {
i2c_state = i2c_state & 0x01;
}
reg[0] = 0x1B;
reg[1] = 0b10000000;
twi_timeout = TWI_TIMEOUT_COUNT;
twi_write_done = 0x00;
twi_address_nack = 0x00;
nrf_drv_twi_tx(&m_twi, KXTJ3_ADDRESS, reg, 2, false);
while (!twi_write_done && --twi_timeout) {
idle_state_handle();
}
if (!twi_timeout || twi_address_nack) {
i2c_state = i2c_state & 0x00;
} else {
i2c_state = i2c_state & 0x01;
}
return i2c_state;
}
static uint8_t get_kxtj3_vector(uint8_t *output_vector) {
uint8_t i2c_state = 0x01;
uint8_t twi_timeout = 0;
uint8_t reg = 0x06;
uint8_t buffer[6] = { 0x00 };
twi_timeout = TWI_TIMEOUT_COUNT;
twi_write_done = 0x00;
twi_address_nack = 0x00;
nrf_drv_twi_tx(&m_twi, KXTJ3_ADDRESS, ®, 1, false);
while (!twi_write_done && --twi_timeout) {
idle_state_handle();
}
if (!twi_timeout || twi_address_nack) {
i2c_state = i2c_state & 0x00;
} else {
i2c_state = i2c_state & 0x01;
}