forked from andikleen/pmu-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslm_ratios.py
183 lines (157 loc) · 4.94 KB
/
slm_ratios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#
# Silvermont top level model
# Can be collected without multiplexing
# Please see http://ark.intel.com for more details on these CPUs.
#
print_error = lambda msg: False
version = "1.0"
# Instructions Per Cycle
def IPC(EV, level):
return EV("INST_RETIRED.ANY", level) / EV("cycles", 1)
# Average Frequency Utilization relative nominal frequency
def TurboUtilization(EV, level):
return EV("cycles", level) / EV("CPU_CLK_UNHALTED.REF_TSC", level)
def DurationTimeInSeconds(EV, level):
return EV("interval-ns", 0) / 1e+06 / 1000
# Run duration time in seconds
def Time(EV, level):
return DurationTimeInSeconds(EV, level)
# Per-thread actual clocks
def CLKS(EV, level):
return EV("CPU_CLK_UNHALTED.THREAD", level)
# Cycles Per Instruction (threaded)
def CPI(EV, level):
return 1 / IPC(EV, level)
class FrontendBound:
name = "Frontend Bound"
domain = ""
desc = """
This category reflects slots where the Frontend of the processor undersupplies
its Backend."""
level = 1
def compute(self, EV):
try:
self.val = EV("NO_ALLOC_CYCLES.NOT_DELIVERED", 1) / EV("cycles", 1)
self.thresh = self.val > 0
except ZeroDivisionError:
self.val = 0
self.thresh = False
return self.val
class BackendOrBadSpeculation:
name = "Backend or Bad Speculation"
domain = "Slots"
desc = """
This category reflects slots wasted due to incorrect speculations, or
slots where no uops are being delivered due to a lack
of required resources for accepting more uops in the Backend of the pipeline. """
level = 1
def compute(self, EV):
try:
EV("cycles", 1) # hack to force evaluation
self.val = 1. - self.FrontendBound.val - self.Retiring.val
self.thresh = self.val > 0.0
except ZeroDivisionError:
self.val = 0
self.thresh = False
return self.val
class Retiring:
name = "Retiring"
domain = ""
desc = """
This category reflects slots utilized by good uops i.e. allocated uops that
eventually get retired."""
level = 1
def compute(self, EV):
try:
self.val = (EV("UOPS_RETIRED.ALL", 1) * 0.5)/ EV("cycles", 1)
self.thresh = self.val > 0
except ZeroDivisionError:
self.val = 0
self.thresh = False
return self.val
class Metric_IPC:
name = "IPC"
desc = """
Instructions Per Cycle"""
def compute(self, EV):
try:
self.val = IPC(EV, 0)
except ZeroDivisionError:
print "IPC zero division"
self.val = 0
class Metric_TurboUtilization:
name = "TurboUtilization"
desc = """
Average Frequency Utilization relative nominal frequency"""
def compute(self, EV):
try:
self.val = TurboUtilization(EV, 0)
except ZeroDivisionError:
print "TurboUtilization zero division"
self.val = 0
class Metric_CLKS:
name = "CLKS"
desc = """
Per-thread actual clocks"""
domain = "Count"
maxval = 0
errcount = 0
def compute(self, EV):
try:
self.val = CLKS(EV, 0)
except ZeroDivisionError:
print_error("CLKS zero division")
self.errcount += 1
self.val = 0
class Metric_Time:
name = "Time"
desc = """
Run duration time in seconds"""
domain = "Count"
maxval = 0
errcount = 0
def compute(self, EV):
try:
self.val = Time(EV, 0)
except ZeroDivisionError:
print_error("Time zero division")
self.errcount += 1
self.val = 0
class Metric_CPI:
name = "CPI"
desc = """
Cycles Per Instruction (threaded)"""
domain = "Metric"
maxval = 0
errcount = 0
def compute(self, EV):
try:
self.val = CPI(EV, 0)
except ZeroDivisionError:
print_error("CPI zero division")
self.errcount += 1
self.val = 0
class Setup:
def __init__(self, r):
prev = None
o = dict()
n = FrontendBound() ; r.run(n) ; n.parent = prev ; prev = n
o["FrontendBound"] = n
n = Retiring() ; r.run(n) ; n.parent = prev ; prev = n
o["Retiring"] = n
n = BackendOrBadSpeculation() ; r.run(n) ; n.parent = prev ; prev = n
o["BackendOrBadSpeculation"] = n
o["BackendOrBadSpeculation"].FrontendBound = o["FrontendBound"]
o["BackendOrBadSpeculation"].Retiring = o["Retiring"]
o["FrontendBound"].sibling = None
o["BackendOrBadSpeculation"].sibling = None
o["Retiring"].sibling = None
o["FrontendBound"].sample = []
o["BackendOrBadSpeculation"].sample = []
o["Retiring"].sample = []
# user visible metrics
n = Metric_IPC() ; r.metric(n)
n = Metric_CPI() ; r.metric(n)
n = Metric_TurboUtilization() ; r.metric(n)
n = Metric_CLKS() ; r.metric(n)
n = Metric_Time() ; r.metric(n)