-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
142 lines (110 loc) · 4.95 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
From: https://github.com/carpedm20/DCGAN-tensorflow/blob/master/ops.py
"""
import math
import tensorflow as tf
if "concat_v2" in dir(tf):
def concat(tensors, axis, *args, **kwargs):
return tf.concat_v2(tensors, axis, *args, **kwargs)
else:
def concat(tensors, axis, *args, **kwargs):
return tf.concat(tensors, axis, *args, **kwargs)
def conv_out_size_same(size, stride):
return int(math.ceil(float(size) / float(stride)))
class batch_norm(object):
def __init__(self, epsilon=1e-5, momentum=0.9, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x, train=True):
return tf.contrib.layers.batch_norm(
x,
decay=self.momentum,
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=train,
scope=self.name
)
def conv_cond_concat(x, y):
"""Concatenate conditioning vector on feature map axis.
Attach `y` to the channel level of `x`.
y.shape() is expected to be (batch_size, 1, 1, num_categories)
"""
x_shapes = x.get_shape()
y_shapes = y.get_shape()
return concat([
x, y * tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])], 3)
def conv2d(input_, output_dim,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="conv2d"):
"""Apply convolution computation using a kernel of size (k_h, k_w) over the image
input_ with strides (1, d_h, d_w, 1) and SAME padding.
For example:
i = <input image size>, k = 5, s = 2, p = k // 2 = 2
o = (i + 2p - k) // 2 + 1 = (i - 1) // 2 + 1
Read more: https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic
Returns a tensor of shape (
batch_size,
(input_image_height - 1) // 2 + 1,
(input_image_width - 1) // 2 + 1,
output_dim,
).
"""
with tf.variable_scope(name):
w = tf.get_variable('weights', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
return conv
def deconv2d(input_, output_shape,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="deconv2d", with_w=False):
"""Apply transposed convolution computation using a kernel of size (k_h, k_w) over the
image input_ with strides (1, d_h, d_w, 1) and SAME padding.
Read more: https://github.com/vdumoulin/conv_arithmetic
Shapes:
(This is the k layer from ther last)
input_.shape = (batch_size, img_h // 2^k, img_w // 2^k, gf_dim * 2^k)
output_shape = (batch_size, img_h // 2^(k-1), img_w // 2^(k-1), gf_dim * 2^(k-1))
w.shape = (k_h, k_w, gf_dim * 2^(k-1), gf_dim * 2^k)
biases.shape = (gf_dim * 2^(k-1), )
"""
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('weights', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
try:
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
# Support for verisons of TensorFlow before 0.7.0
except AttributeError:
deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
if with_w:
return deconv, w, biases
else:
return deconv
def lrelu(x, leak=0.2, name="lrelu"):
"""ReLU layer"""
return tf.maximum(x, leak * x)
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
"""Linear regression layer.
input_ (batch_size, dim) x matric (dim, output_dim) + biases (output_dim, )
Returns a tensor of shape (batch_size, output_size)
"""
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias