-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
78 lines (59 loc) · 2.43 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
import device_patches # Device specific patches for Jetson Nano (needs to be before importing cv2)
import cv2
import os
import time
import sys, getopt
import numpy as np
from edge_impulse_linux.image import ImageImpulseRunner
model_path = "model/modelfile.eim"
data_path = "data"
runner = None
dir_path = os.path.dirname(os.path.realpath(__file__))
modelfile = os.path.join(dir_path, model_path)
totaltime = 0
files = 0
dim = 96
with ImageImpulseRunner(modelfile) as runner:
try:
model_info = runner.init()
print('Loaded runner for "' + model_info['project']['owner'] + ' / ' + model_info['project']['name'] + '"')
print("")
labels = model_info['model_parameters']['labels']
for sample in os.listdir(data_path):
file = data_path + "/" + sample
files += 1
img = cv2.cvtColor(
cv2.imread(file), cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (dim, dim))
print("Loaded test image: "+file)
features, cropped = runner.get_features_from_image(img)
start = time.time()
res = runner.classify(features)
end = time.time()
benchmark = end - start
totaltime += benchmark
ground = "Unknown"
classifications = res['result']['classification']
result = max(classifications, key=classifications.get)
if "Benign" in sample:
ground = "Benign"
elif "Pre" in sample:
ground = "Pre"
elif "Pro" in sample:
ground = "Pro"
for label in labels:
score = classifications[label]
print('%s: %.2f\t' % (label, score), end='')
print("")
print("Ground: "+ground)
print("Classification: " + result + " with " + str(classifications[result]) + " confidence")
if ground == result:
print("Result: Correctly classified " + result + " sample in " + str(benchmark) + " seconds")
else:
print("Result: Incorrectly classified " + result + " sample in " + str(benchmark) + " seconds")
print("")
print("Classifications finished " + str(files) + " in " + str(totaltime) + " seconds")
finally:
if (runner):
runner.stop()