forked from cypherstack/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel_compressed.py
320 lines (280 loc) · 8.58 KB
/
parallel_compressed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Parallel compressed one-of-many Groth/Bootle-type proving system
#
# {F,{S,V},S1,V1 ; (l,s,v) | S_l - S1 = sF, V_l - V1 = vF}
from dumb25519 import *
import transcript
class ParallelCompressedParameters:
def __init__(self,F,n,m):
if not isinstance(F,Point):
raise TypeError('Bad type for parameter F!')
if not isinstance(n,int) or not n > 1:
raise TypeError('Bad type or value for parameter n!')
if not isinstance(m,int) or not m > 1:
raise TypeError('Bad type or value for parameter m!')
self.F = F
self.n = n
self.m = m
class ParallelCompressedStatement:
def __init__(self,params,S,V,S1,V1):
if not isinstance(params,ParallelCompressedParameters):
raise TypeError('Bad type for parameters!')
n = params.n
m = params.m
if not isinstance(S,PointVector) or not len(S) == n**m:
raise TypeError('Bad type or length for parallel statement input S!')
if not isinstance(V,PointVector) or not len(V) == n**m:
raise TypeError('Bad type or length for parallel statement input V!')
if not isinstance(S1,Point):
raise TypeError('Bad type for parallel statement input S1!')
if not isinstance(V1,Point):
raise TypeError('Bad type for parallel statement input V1!')
self.F = params.F
self.n = n
self.m = m
self.S = S
self.V = V
self.S1 = S1
self.V1 = V1
self.Gi = [PointVector([hash_to_point('Gi',j,i) for i in range(n)]) for j in range(m)]
class ParallelCompressedWitness:
def __init__(self,l,s,v):
if not isinstance(l,int):
raise TypeError('Bad type for parallel witness l!')
if not isinstance(s,Scalar):
raise TypeError('Bad type for parallel witness s!')
if not isinstance(v,Scalar):
raise TypeError('Bad type for parallel witness v!')
self.l = l
self.s = s
self.v = v
class ParallelCompressedProof:
def __repr__(self):
return repr(hash_to_scalar(
self.A,
self.B,
self.C,
self.D,
self.G,
self.f,
self.zA,
self.zC,
self.z
))
def __init__(self,A,B,C,D,G,f,zA,zC,z):
if not isinstance(A,Point):
raise TypeError('Bad type for parallel proof element A!')
if not isinstance(B,Point):
raise TypeError('Bad type for parallel proof element B!')
if not isinstance(C,Point):
raise TypeError('Bad type for parallel proof element C!')
if not isinstance(D,Point):
raise TypeError('Bad type for parallel proof element D!')
if not isinstance(G,PointVector):
raise TypeError('Bad type for parallel proof element G!')
if not isinstance(f,list):
raise TypeError('Bad type for parallel proof element f!')
for f_ in f:
if not isinstance(f_,ScalarVector):
raise TypeError('Bad type for parallel proof element f!')
if not isinstance(zA,Scalar):
raise TypeError('Bad type for parallel proof element zA!')
if not isinstance(zC,Scalar):
raise TypeError('Bad type for parallel proof element zC!')
if not isinstance(z,Scalar):
raise TypeError('Bad type for parallel proof element z!')
self.A = A
self.B = B
self.C = C
self.D = D
self.G = G
self.f = f
self.zA = zA
self.zC = zC
self.z = z
# Pedersen matrix commitment
def com_matrix(Gi,F,v,r):
C = r*F
for j in range(len(v)):
for i in range(len(v[0])):
C += Gi[j][i]*v[j][i]
return C
# Kronecker delta
def delta(x,y):
if x == y:
return Scalar(1)
return Scalar(0)
# Compute a convolution with a degree-one polynomial
def convolve(x,y):
if not len(y) == 2:
raise ValueError('Convolution requires a degree-one polynomial!')
r = [Scalar(0)]*(len(x)+1)
for i in range(len(x)):
for j in range(len(y)):
r[i+j] += x[i]*y[j]
return r
# Decompose a value with given base and size
def decompose(val,base,size):
r = []
for i in range(size-1,-1,-1):
slot = base**i
r.append(int(val/slot))
val -= slot*r[-1]
return list(reversed(r))
# Perform a commitment-to-zero proof
def prove(statement,witness):
if not isinstance(statement,ParallelCompressedStatement):
raise TypeError('Bad type for parallel statement!')
if not isinstance(witness,ParallelCompressedWitness):
raise TypeError('Bad type for parallel witness!')
# Check the statement validity
l = witness.l
n = statement.n
m = statement.m
N = n**m
if l < 0 or l >= N:
raise IndexError('Invalid parallel witness!')
if not statement.S[l] - statement.S1 == witness.s*statement.F:
raise ArithmeticError('Invalid parallel statement!')
if not statement.V[l] - statement.V1 == witness.v*statement.F:
raise ArithmeticError('Invalid parallel statement!')
# Begin the proof
rA = random_scalar()
rB = random_scalar()
rC = random_scalar()
rD = random_scalar()
# Commit to zero-sum blinders
a = [[random_scalar() for _ in range(n)] for _ in range(m)]
for j in range(m):
a[j][0] = Scalar(0)
for i in range(1,n):
a[j][0] -= a[j][i]
A = com_matrix(statement.Gi,statement.F,a,rA)
# Commit to decomposition bits
decomp_l = decompose(l,n,m)
sigma = [[Scalar(0) for _ in range(n)] for _ in range(m)]
for j in range(m):
for i in range(n):
sigma[j][i] = delta(decomp_l[j],i)
B = com_matrix(statement.Gi,statement.F,sigma,rB)
# Commit to a/sigma relationships
a_sigma = [[Scalar(0) for _ in range(n)] for _ in range(m)]
for j in range(m):
for i in range(n):
a_sigma[j][i] = a[j][i]*(Scalar(1) - Scalar(2)*sigma[j][i])
C = com_matrix(statement.Gi,statement.F,a_sigma,rC)
# Commit to squared a-values
a_sq = [[Scalar(0) for _ in range(n)] for _ in range(m)]
for j in range(m):
for i in range(n):
a_sq[j][i] = -a[j][i]*a[j][i]
D = com_matrix(statement.Gi,statement.F,a_sq,rD)
# Compute p coefficients
p = [[] for _ in range(N)]
for k in range(N):
decomp_k = decompose(k,n,m)
p[k] = [a[0][decomp_k[0]],delta(decomp_l[0],decomp_k[0])]
for j in range(1,m):
p[k] = convolve(p[k],[a[j][decomp_k[j]],delta(decomp_l[j],decomp_k[j])])
# Challenge
tr = transcript.Transcript('Parallel Groth/Bootle')
tr.update(statement.F)
tr.update(n)
tr.update(m)
tr.update(statement.S)
tr.update(statement.V)
tr.update(statement.S1)
tr.update(statement.V1)
tr.update(A)
tr.update(B)
tr.update(C)
tr.update(D)
mu = tr.challenge()
# Generate proof values
G = PointVector([Z for _ in range(m)])
rho = ScalarVector([random_scalar() for _ in range(m)])
for j in range(m):
for i in range(N):
G[j] += ((statement.S[i] - statement.S1) + mu*(statement.V[i] - statement.V1))*p[i][j]
G[j] += rho[j]*statement.F
# Challenge
tr.update(G)
x = tr.challenge()
f = [ScalarVector([Scalar(0) for _ in range(n-1)]) for _ in range(m)]
for j in range(m):
for i in range(1,n):
f[j][i-1] = sigma[j][i]*x + a[j][i]
zA = rB*x + rA
zC = rC*x + rD
z = (witness.s + mu*witness.v)*x**m
for j in range(m):
z -= rho[j]*x**j
return ParallelCompressedProof(A,B,C,D,G,f,zA,zC,z)
# Verify a commitment-to-zero proof
def verify(statement,proof):
# Check statement consistency
if not isinstance(statement,ParallelCompressedStatement):
raise TypeError('Bad type for parallel statement!')
if not isinstance(proof,ParallelCompressedProof):
raise TypeError('Bad type for parallel proof!')
n = statement.n
m = statement.m
N = n**m
f = [[Scalar(0) for _ in range(n)] for _ in range(m)]
# Transcript and challenges
tr = transcript.Transcript('Parallel Groth/Bootle')
tr.update(statement.F)
tr.update(n)
tr.update(m)
tr.update(statement.S)
tr.update(statement.V)
tr.update(statement.S1)
tr.update(statement.V1)
tr.update(proof.A)
tr.update(proof.B)
tr.update(proof.C)
tr.update(proof.D)
mu = tr.challenge()
tr.update(proof.G)
x = tr.challenge()
# Matrix reconstruction
for j in range(m):
f[j][0] = x
for i in range(1,n):
f[j][i] = proof.f[j][i-1]
f[j][0] -= f[j][i]
# A/B check
if not com_matrix(statement.Gi,statement.F,f,proof.zA) == proof.B*x + proof.A:
raise ArithmeticError('Failed parallel A/B check!')
# C/D check
fx = [ScalarVector([Scalar(0) for _ in range(n)]) for _ in range(m)]
for j in range(m):
for i in range(n):
fx[j][i] = f[j][i]*(x-f[j][i])
if not com_matrix(statement.Gi,statement.F,fx,proof.zC) == proof.C*x + proof.D:
raise ArithmeticError('Failed parallel C/D check!')
# Commitment check
scalars = ScalarVector([])
points = PointVector([])
scalar_S1 = Scalar(0)
scalar_V1 = Scalar(0)
for i in range(N):
s = Scalar(1)
decomp_i = decompose(i,n,m)
for j in range(m):
s *= f[j][decomp_i[j]]
scalars.append(s)
points.append(statement.S[i])
scalars.append(mu*s)
points.append(statement.V[i])
scalar_S1 -= s
scalar_V1 -= mu*s
for j in range(m):
scalars.append(-x**j)
points.append(proof.G[j])
scalars.append(scalar_S1)
points.append(statement.S1)
scalars.append(scalar_V1)
points.append(statement.V1)
if not multiexp(scalars,points) == proof.z*statement.F:
raise ArithmeticError('Failed parallel commitment check!')
return True