forked from Axolotl233/Simple_Script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlot.pafCoordsDotPlotly.R
304 lines (276 loc) · 15.3 KB
/
Plot.pafCoordsDotPlotly.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env Rscript
## Created by Zeyu Zheng, Lanzhou university
## Make Dot Plot with Percent Divergence on color scale
suppressPackageStartupMessages(library(optparse))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(plotly))
option_list <- list(
make_option(c("-i","--input"), type="character", default=NULL,
help="coords file from mummer program 'show.coords' [default %default]",
dest="input_filename"),
make_option(c("-o","--output"), type="character", default="out",
help="output filename prefix [default %default]",
dest="output_filename"),
make_option(c("-v", "--verbose"), action="store_true", default=TRUE,
help="Print out all parameter settings [default]"),
make_option(c("-q", "--min-query-length"), type="numeric", default=400000,
help="filter queries with total alignments less than cutoff X bp [default %default]",
dest="min_query_aln"),
make_option(c("-m", "--min-alignment-length"), type="numeric", default=10000,
help="filter alignments less than cutoff X bp [default %default]",
dest="min_align"),
make_option(c("-p","--plot-size"), type="numeric", default=15,
help="plot size X by X inches [default %default]",
dest="plot_size"),
make_option(c("-l", "--show-horizontal-lines"), action="store_true", default=FALSE,
help="turn on horizontal lines on plot for separating scaffolds [default %default]",
dest="h_lines"),
make_option(c("-k", "--number-ref-chromosomes"), type="numeric", default=NULL,
help="number of sorted reference chromosomes to keep [default all chromosmes]",
dest="keep_ref"),
make_option(c("-s", "--identity"), action="store_true", default=FALSE,
help="turn on color alignments by % identity [default %default]",
dest="similarity"),
make_option(c("-t", "--identity-on-target"), action="store_true", default=FALSE,
help="turn on calculation of % identity for on-target alignments only [default %default]",
dest="on_target"),
make_option(c("-x", "--interactive-plot-off"), action="store_false", default=TRUE,
help="turn off production of interactive plotly [default %default]",
dest="interactive"),
make_option(c("-r", "--reference-ids"), type="character", default=NULL,
help="comma-separated list of reference IDs to keep [default %default]",
dest="refIDs")
)
options(error=traceback)
parser <- OptionParser(usage = "%prog -i alignments.coords -o out [options]",option_list=option_list)
opt = parse_args(parser)
# rm(list=ls())
# setwd("~/GitHubLocal/dotPlotly/testing/minimap_paf/")
# opt = list(input_filename="susie_ggo_grch38.minimap0.txt",
# output_filename="testOut.allRef",
# min_align = 500, min_query_aln = 500000,
# keep_ref=23,
# similarity=T, h_lines=T, interactive=F, plot_size=15, on_target = T, v=FALSE)
if(opt$v){
cat(paste0("PARAMETERS:\ninput (-i): ", opt$input_filename,"\n"))
cat(paste0("output (-o): ", opt$output_filename,"\n"))
cat(paste0("minimum query aggregate alignment length (-q): ", opt$min_query_aln,"\n"))
cat(paste0("minimum alignment length (-m): ", opt$min_align,"\n"))
cat(paste0("plot size (-p): ", opt$plot_size,"\n"))
cat(paste0("show horizontal lines (-l): ", opt$h_lines,"\n"))
cat(paste0("number of reference chromosomes to keep (-k): ", opt$keep_ref,"\n"))
cat(paste0("show % identity (-s): ", opt$similarity,"\n"))
cat(paste0("show % identity for on-target alignments only (-t): ", opt$similarity,"\n"))
cat(paste0("produce interactive plot (-x): ", opt$interactive,"\n"))
cat(paste0("reference IDs to keep (-r): ", opt$refIDs,"\n"))
}
opt$output_filename = unlist(strsplit(opt$output_filename, "/"))[length(unlist(strsplit(opt$output_filename, "/")))]
# read in alignments
alignments = read.table(opt$input_filename, stringsAsFactors = F, fill = T)
# set column names
# PAF IS ZERO-BASED - CHECK HOW CODE WORKS
colnames(alignments)[1:12] = c("queryID","queryLen","queryStart","queryEnd","strand","refID","refLen","refStart","refEnd","numResidueMatches","lenAln","mapQ")
# Fixes for PAF
# Some measure of similarity - need to check on this
alignments$percentID = alignments$numResidueMatches / alignments$lenAln
queryStartTemp = alignments$queryStart
# Flip starts, ends for negative strand alignments
alignments$queryStart[which(alignments$strand == "-")] = alignments$queryEnd[which(alignments$strand == "-")]
alignments$queryEnd[which(alignments$strand == "-")] = queryStartTemp[which(alignments$strand == "-")]
rm(queryStartTemp)
cat(paste0("\nNumber of alignments: ", nrow(alignments),"\n"))
cat(paste0("Number of query sequences: ", length(unique(alignments$queryID)),"\n"))
# sort by ref chromosome sizes, keep top X chromosomes OR keep specified IDs
if(is.null(opt$refIDs)){
chromMax = tapply(alignments$refEnd, alignments$refID, max)
if(is.null(opt$keep_ref)){
opt$keep_ref = length(chromMax)
}
refIDsToKeepOrdered = names(sort(chromMax, decreasing = T)[1:opt$keep_ref])
alignments = alignments[which(alignments$refID %in% refIDsToKeepOrdered),]
} else {
refIDsToKeepOrdered = unlist(strsplit(opt$refIDs, ","))
alignments = alignments[which(alignments$refID %in% refIDsToKeepOrdered),]
}
# filter queries by alignment length, for now include overlapping intervals
queryLenAgg = tapply(alignments$lenAln, alignments$queryID, sum)
alignments = alignments[which(alignments$queryID %in% names(queryLenAgg)[which(queryLenAgg > opt$min_query_aln)]),]
# filter alignment by length
alignments = alignments[which(alignments$lenAln > opt$min_align),]
# re-filter queries by alignment length, for now include overlapping intervals
queryLenAgg = tapply(alignments$lenAln, alignments$queryID, sum)
alignments = alignments[which(alignments$queryID %in% names(queryLenAgg)[which(queryLenAgg > opt$min_query_aln)]),]
cat(paste0("\nAfter filtering... Number of alignments: ", nrow(alignments),"\n"))
cat(paste0("After filtering... Number of query sequences: ", length(unique(alignments$queryID)),"\n\n"))
# sort df on ref
alignments$refID = factor(alignments$refID, levels = refIDsToKeepOrdered) # set order of refID
alignments = alignments[with(alignments,order(refID,refStart)),]
chromMax = tapply(alignments$refEnd, alignments$refID, max)
# make new ref alignments for dot plot
if(length(levels(alignments$refID)) > 1){
alignments$refStart2 = alignments$refStart + sapply(as.character(alignments$refID), function(x) ifelse(x == names((chromMax))[1], 0, cumsum(as.numeric(chromMax))[match(x, names(chromMax)) - 1]) )
alignments$refEnd2 = alignments$refEnd + sapply(as.character(alignments$refID), function(x) ifelse(x == names((chromMax))[1], 0, cumsum(as.numeric(chromMax))[match(x, names(chromMax)) - 1]) )
} else {
alignments$refStart2 = alignments$refStart
alignments$refEnd2 = alignments$refEnd
}
## queryID sorting step 1/2
# sort levels of factor 'queryID' based on longest alignment
alignments$queryID = factor(alignments$queryID, levels=unique(as.character(alignments$queryID)))
queryMaxAlnIndex = tapply(alignments$lenAln,
alignments$queryID,
which.max,
simplify = F)
alignments$queryID = factor(alignments$queryID, levels = unique(as.character(alignments$queryID))[order(mapply(
function(x, i)
alignments$refStart2[which(i == alignments$queryID)][x],
queryMaxAlnIndex,
names(queryMaxAlnIndex)
))])
## queryID sorting step 2/2
## sort levels of factor 'queryID' based on longest aggregrate alignmentst to refID's
# per query ID, get aggregrate alignment length to each refID
queryLenAggPerRef = sapply((levels(alignments$queryID)), function(x) tapply(alignments$lenAln[which(alignments$queryID == x)], alignments$refID[which(alignments$queryID == x)], sum) )
if(length(levels(alignments$refID)) > 1){
queryID_Ref = apply(queryLenAggPerRef, 2, function(x) rownames(queryLenAggPerRef)[which.max(x)])
} else {queryID_Ref = sapply(queryLenAggPerRef, function(x) names(queryLenAggPerRef)[which.max(x)])}
# set order for queryID
alignments$queryID = factor(alignments$queryID, levels = (levels(alignments$queryID))[order(match(queryID_Ref, levels(alignments$refID)))])
# flip query starts stops to forward if most align are in reverse complement
queryRevComp = tapply(alignments$queryEnd - alignments$queryStart, alignments$queryID, function(x) sum(x)) < 0
queryRevComp = names(queryRevComp)[which(queryRevComp)]
queryMax = tapply(c(alignments$queryEnd, alignments$queryStart), c(alignments$queryID,alignments$queryID), max)
names(queryMax) = levels(alignments$queryID)
alignments$queryStart[which(alignments$queryID %in% queryRevComp)] = queryMax[match(as.character(alignments$queryID[which(alignments$queryID %in% queryRevComp)]), names(queryMax))] - alignments$queryStart[which(alignments$queryID %in% queryRevComp)] + 1
alignments$queryEnd[which(alignments$queryID %in% queryRevComp)] = queryMax[match(as.character(alignments$queryID[which(alignments$queryID %in% queryRevComp)]), names(queryMax))] - alignments$queryEnd[which(alignments$queryID %in% queryRevComp)] + 1
## make new query alignments for dot plot
# subtract queryStart and Ends by the minimum alignment coordinate + 1
queryMin = tapply(c(alignments$queryEnd, alignments$queryStart), c(alignments$queryID,alignments$queryID), min)
names(queryMin) = levels(alignments$queryID)
alignments$queryStart = as.numeric(alignments$queryStart - queryMin[match(as.character(alignments$queryID),names(queryMin))] + 1)
alignments$queryEnd = as.numeric(alignments$queryEnd - queryMin[match(as.character(alignments$queryID),names(queryMin))] + 1)
queryMax = tapply(c(alignments$queryEnd, alignments$queryStart), c(alignments$queryID,alignments$queryID), max)
names(queryMax) = levels(alignments$queryID)
alignments$queryStart2 = alignments$queryStart + sapply(as.character(alignments$queryID), function(x) ifelse(x == names(queryMax)[1], 0, cumsum(queryMax)[match(x, names(queryMax)) - 1]) )
alignments$queryEnd2 = alignments$queryEnd + sapply(as.character(alignments$queryID), function(x) ifelse(x == names(queryMax)[1], 0, cumsum(queryMax)[match(x, names(queryMax)) - 1]) )
# get mean percent ID per contig
# calc percent ID based on on-target alignments only
if(opt$on_target & length(levels(alignments$refID)) > 1){
alignments$queryTarget = queryID_Ref[match(as.character(alignments$queryID), names(queryID_Ref))]
alignmentsOnTarget = alignments[which(as.character(alignments$refID) == alignments$queryTarget),]
scaffoldIDmean = tapply(alignmentsOnTarget$percentID, alignmentsOnTarget$queryID, mean)
alignments$percentIDmean = as.numeric(scaffoldIDmean[match(as.character(alignments$queryID), names(scaffoldIDmean))])
alignments$percentIDmean[which(as.character(alignments$refID) != alignments$queryTarget)] = NA
} else{
scaffoldIDmean = tapply(alignments$percentID, alignments$queryID, mean)
alignments$percentIDmean = as.numeric(scaffoldIDmean[match(as.character(alignments$queryID), names(scaffoldIDmean))])
}
# plot
yTickMarks = tapply(alignments$queryEnd2, alignments$queryID, max)
options(warn = -1) # turn off warnings
if (opt$similarity) {
gp = ggplot(alignments) +
geom_point(
mapping = aes(x = refStart2, y = queryStart2, color = percentIDmean),
size = 0.009
) +
geom_point(
mapping = aes(x = refEnd2, y = queryEnd2, color = percentIDmean),
size = 0.009
) +
geom_segment(
aes(
x = refStart2,
xend = refEnd2,
y = queryStart2,
yend = queryEnd2,
color = percentIDmean,
text = sprintf(
'Query ID: %s<br>Query Start Pos: %s<br>Query End Pos: %s<br>Target ID: %s<br>Target Start Pos: %s<br>Target End Pos: %s<br>Length: %s kb',
queryID,
queryStart,
queryEnd,
refID,
refStart,
refEnd,
round(lenAln / 1000, 1)
)
)
) +
scale_x_continuous(breaks = cumsum(as.numeric(chromMax)),
labels = levels(alignments$refID)) +
theme_bw() +
theme(text = element_text(size = 8)) +
theme(
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
axis.text.y = element_text(size = 4, angle = 15)
) +
scale_y_continuous(breaks = yTickMarks, labels = substr(levels(alignments$queryID), start = 1, stop = 20)) +
{ if(opt$h_lines){ geom_hline(yintercept = yTickMarks,
color = "grey60",
size = .1) }} +
scale_color_distiller(palette = "Spectral") +
labs(color = "Mean Percent Identity (per query)",
title = paste0( paste0("Post-filtering number of alignments: ", nrow(alignments),"\t\t\t\t"),
paste0("minimum alignment length (-m): ", opt$min_align,"\n"),
paste0("Post-filtering number of queries: ", length(unique(alignments$queryID)),"\t\t\t\t\t\t\t\t"),
paste0("minimum query aggregate alignment length (-q): ", opt$min_query_aln)
)) +
xlab("Target") +
ylab("Query")
} else {
gp = ggplot(alignments) +
geom_point(mapping = aes(x = refStart2, y = queryStart2),
size = 0.009) +
geom_point(mapping = aes(x = refEnd2, y = queryEnd2),
size = 0.009) +
geom_segment(aes(
x = refStart2,
xend = refEnd2,
y = queryStart2,
yend = queryEnd2,
text = sprintf(
'Query ID: %s<br>Query Start Pos: %s<br>Query End Pos: %s<br>Target ID: %s<br>Target Start Pos: %s<br>Target End Pos: %s<br>Length: %s kb',
queryID,
queryStart,
queryEnd,
refID,
refStart,
refEnd,
round(lenAln / 1000, 1)
)
)) +
scale_x_continuous(breaks = cumsum(chromMax),
labels = levels(alignments$refID)) +
theme_bw() +
theme(text = element_text(size = 8)) +
theme(
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
axis.text.y = element_text(size = 4, angle = 15)
) +
scale_y_continuous(breaks = yTickMarks, labels = substr(levels(alignments$queryID), start = 1, stop = 20)) +
{ if(opt$h_lines){ geom_hline(yintercept = yTickMarks,
color = "grey60",
size = .1) }} +
labs(color = "Mean Percent Identity (per query)",
title = paste0( paste0("Post-filtering number of alignments: ", nrow(alignments),"\t\t\t\t"),
paste0("minimum alignment length (-m): ", opt$min_align,"\n"),
paste0("Post-filtering number of queries: ", length(unique(alignments$queryID)),"\t\t\t\t\t\t\t\t"),
paste0("minimum query aggregate alignment length (-q): ", opt$min_query_aln)
)) +
xlab("Target") +
ylab("Query")
}
# gp
ggsave(filename = paste0(opt$output_filename, ".png"), width = opt$plot_size, height = opt$plot_size, units = "in", dpi = 300, limitsize = F)
if(opt$interactive){
pdf(NULL)
gply = ggplotly(gp, tooltip = "text")
htmlwidgets::saveWidget(as.widget(gply), file = paste0(opt$output_filename, ".html"))
}
options(warn=0) # turn on warnings
#